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A detailed Monte Carlo study is presented for classical diffusion (random walks) 
on random L * L triangular and L * L * L simple cubic lattices, with L up to 
4096 and 256, respectively. The speed of a Cyber 205 vector computer is found 
to be about one order of magnitude larger than that of a usual CDC Cyber 76 
computer. To reach the asymptotic scaling regime, walks with up to 10 million 
steps were simulated, with about 10 jl steps in total for L = 256 at the percola- 
tion threshold. We review and extend the dynamical scaling description for the 
distance traveled as function of time, the diffusivity above the threshold, and the 
cluster radius below. Earlier discrepancies between scaling theory and computer 
experiment are shown to be due to insufficient Monte Carlo data. The conduc- 
tivity exponent /~ is found to be 2.0 _+ 0.2 in three and 1.28 +_ 0.02 in two 
dimensions. Our data in three dimensions follow well the finite-size scaling 
theory. Below the threshold, the approach of the distance traveled to its 
asymptotic value is consistent with theoretical speculations and an exponent 2/5 
independent of dimensionality. The correction-to-scaling exponent at Pc seems 
to be larger in two than in three dimensions. 
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1. I N T R O D U C T I O N  

T h e  " a n t  in the  l a b y r i n t h "  of  de  G e n n e s  (1) has  b e c o m e  a c o n v e n t i o n a l  t e r m  

to  d i scuss  the  p r o b l e m  of  c lass ica l  d i f f u s i o n  in r a n d o m  p e r c o l a t i n g  sys- 

t ems .  (2-8) H e r e  o n e  s tud ies  t he  r a n d o m  wa lk  m o t i o n  of  pa r t i c l e s  o n  the  
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random clusters formed by connecting the neighboring open sites (in sit~ 
percolation) or allowed bonds ( in bond percolation), which are distribute( 
randomly, with probability p, on a lattice. While some workers restrict th, 
motion of an ant only on the "infinite" percolating clusters for p above Pc 
others allow it to execute random walks on any cluster chosen randomly 
Here, we follow the latter "liberal" approach. The range of motion i 
limited below Pc where all clusters are finite; the ants may  travel to infinit, 
only on the infinite cluster which exists for p >/Pc along with finite clusters 

More quantitatively, if the ant starts for p < Pc from an arbitrar2 
origin, the mean square displacement R 2=  (rZ(t)) after a long time 
approaches 

R 2 = R ~  A e x p [ - ( t / T )  w] + . . .  (1 

where A is some p-dependent constant, R~ is the saturation value for t 
and is some average cluster radius diverging at the percolation threshok 
with a critical exponent m. Also the characteristic time T diverges atpc. Fo  
P > Pc, R grows with time asymptotically according to a diffusion law: 

dR 2 / dt = const + B exp [ - ( t / T ' )  w' ] + " ' "  (2 

Right at p --Pc, the asymptotic behavior of R( t )  is presumed to follow al 
anomalous diffusion law (2) 

R e c t k +  . . .  (3 

Although the direct study of diffusion by random walk motion on 
regular lattice is a well-known problem, its connection to the conductivit, 
of a random percolating system, particularly at Pc, has been made onl, 
recently. The scaling description of fractals (3) has added greatly to th, 
interest in studying diffusion on random networks. (4'5~ Gefen et al. (4 
generally derived scaling relations among the exponents describing conduc 
tivity and percolative quantities. This type of scaling approach is thq 
percolation analog of dynamical scaling, as developed for example for spi~ 
diffusion in magnets near the Curie points. (6) Mitescu and Roussenq haw 
recently studied the diffusion on two- and three-dimensional lattices (2) 
they raise serious objections regarding these relations among exponents, h 
their Monte Carlo simulations, where they average over all cluster sizes, thq 
critical exponent m for R was found in three dimensions to be about 1.65 ii 
contradiction to the scaling prediction 21, - 13 = 1.3. Second, they foun( 
the diffusivity D above Pc to vanish with an exponent 1.7 whereas it i 
supposed to vanish as the conductivity with an exponent n e a r  2. (7'8) Third 
their best estimate for the critical exponent k at p - p ~  was about 0.25 a 
opposed to the theoretical prediction k = 0.2. Some of these discrepancie 
also appeared in the different type of Monte Carlo simulation by Be1 
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Avraham and Havlin (9) (see also Kutner and Kehr(4)). Thus there was the 
danger that the whole scaling theory of percolation clusters (1~ had to be 
reexamined in view of these independent contradictions with Monte Carlo 
experiment. 

To shed more light on these discrepancies between theory and com- 
puter experiment, we have performed a detailed simulation for diffusion on 
the simple cubic lattice, and a less detailed one on the triangular lattice. We 
used much longer times t (10 million steps) than before, lattices much larger 
(17 million sites) than those employed by Mitescu and Roussenq, and a 
better computer (CDC Cyber 76 scalar computer at Cologne and CDC 
Cyber 205 vector computer at Bochum). Also, our FORTRAN program 
worked more efficiently, taking an execution time of about 2/~s per step in 
case of the scalar machine and about 0.3/~s per step in case of the vector 
machine. The computational aspects in particular of vector computers were 
one reason why this problem was chosen by us. We will see later that this 
effort paid off by resolving some of the discrepancies and confirming much 
better the scaling theory of percolative diffusion. 

In the following section we describe briefly the scaling description to 
facilitate the reader's understanding. Section 3 describes the computer 
programs used, and Section 4 our results, which are summarized in Section 
5. A short note using some of our results at the three-dimensional percola- 
tion threshold was published before ( 11); its main conclusion was confirmed 
by Havlin and Ben Avraham. (12) 

2. S C A L I N G  T H E O R Y  

In this section we relate the various power laws and exponents men- 
tioned in the previous section by the scaling hypothesis; mostly we review 
known results.(2'4) The random walks on randomly grown clusters involve 
two independent random processes: first, the fluctuation in displacement R 
with respect to time, and second the spatial fluctuations of the occupied 
sites. Thus we have to average over many walks on the same lattice, and 
then also over many lattices. This second average is not needed in diffusion 
on deterministic fractals and similar structures. (13) For our case an ant 
(unbiased random walker) starts its random motion from a randomly 
selected occupied site (local orgin). From then on its motion is restricted to 
the cluster to which the local origin belongs; if it happened to be an 
isolated site the ant never moves. Many ants walk on each lattice. If a local 
origin belongs to a cluster containing s sites, then the rms average distance 
from the origin will approach the radius of gyration R of that cluster (apart 
from a constant factor) since all sites are visited, for long times, with equal 
probability. (14) The probability that the local origin belongs to such an s 
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cluster is n,s,  where n s is the average number, per lattice site, of s cluster~ 
Thus the average displacement R involves a sum over all cluster sizes: 

R 2 = 2 R 2 n s  s ( t ~ o o , p < p c )  (4 

The usual scaling assumption for the cluster numbers is (1~ 

", = s - 7 [ ( P - P c ) s ~  + "'" (5 

where �9 = 2 + 1/6, o = 1/f16,  and fl and 6 are the usual critical exponenl 
for percolation. Analogously one may postulate for the rms average radiu 
of gyration, R s, of an s cluster 

R, =  g[(e - (6 

where ~ cc [P -P~l  ~ is the correlation or connectivity length. 
Replacing the sum in Eq. (4) by an integral from zero to infinity an, 

using fl = (~- - 2 ) / o  one finds 

R2 ec (pc - p )  - ' ,  m = 2v - fi  (7 

for the average displacement below Pc after very long times. Numericall3 
Mitescu and Roussenq (2) found m = 2v  - f l / 3  to be a better approxime 
tion. This deviation from theory thus puts into jeopardy not only dynamic~ 
scaling but also the above static scaling assumptions, Eqs. (5), (6), an, 
requires, if confirmed, a reconsideration of the whole scaling theory c 
percolation clusters. (l~ 

Equation (7) is only a special case. More generally one can make th 
dynamical scaling assumption (4'9) 

R = t"H(t/  z ) (So 

or equivalently, 

R =  tkI4[  ( p  - pc ) t  l/"z] (8b 

For large negative arguments x, this scaling function / t ( x )  varies a 
( - x )  -k~z in order to give the time-independent result of Eq. (7); thu 
z k  -- m / 2 p  = 1 - / ~ / 2 u .  For large positive arguments, on the other hanc 
the diffusion law, Eq. (2) has to be recovered, requir ing/4(x)  to vary fc 
large positive arguments as x (1/2-k)~z. Thus for long times above Pc w 
have 

R 2 oc_ ~z(2k- I) t c~ ( p  - pc) ~z(1-2k)t (9 

On the other hand, Einstein's relation between mobility and diffusivit 
requires the latter to vary as ( p -  p)~, where t~ (often also called t) is th 
critical exponent for the conductivity of random resistor networks. (1~ Thu 
/~ = pz(1 - 2k) = zu - 2t, + fi, using the above z k  = 1 - / ~ / 2 p .  We hav 
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therefore rederived (4) 

and 

z = 2 + ( / ~ - / 3 ) / p  (10) 

2k = ( 2 p  + .  (11) 

Right at p = Pc, a simple power law, Eq. (3), relates R and t, and 
therefore the scaling function H(x)  approaches a finite value for small 
arguments. Since generally for walks on a lattice a fractal dimension can be 
defined through (3) 

radius oc (time) z)' (12) 

we may call 1 / k  the fractal dimension D '  of this random walk on a 
random lattice at its percolation threshold. Above Pc, this fractal dimension 
is 2, as for random walks on a periodic lattice, and below pc it is infinite. (Is) 
Note  that the fractal dimension D' of the walks at p =Pc  differs from the 
fractal dimension Df of the clusters on which the walk occurs at p = pc(3): 

RsOC S'/D:, Df= d- fl/u= d/(l + I/8) (13) 

The fractal dimensionality D is related to the fracton or spectral dimension- 
ality 2Df/(2 + O) = 2 D J z  which in turn can be evaluated from the num- 
ber of visited different sites of the random walk. (15-18) 

Of course, one can also define the above scaling assumption with the 
help of the diffusivity dR2/d t  instead of with R. Then (4) dR2//dt varies as 
( - 0  above pc, and as R -0 a tpc  ' where O = (/z - / 3 ) / / ,  from Eq. (10), and 
z = 2 + 0 .  

For diffusion within an average cluster of s sites, the scaling assump- 
tion contains ( p -  pc)s ~ as an additional variable. (4:9) We denote the rms 
distance for one fixed cluster size s by r, instead of R for the average over 
all clusters. Equation (8a) then has a counterpart  in 

or 

or 

r = tl/zh[ (10 -- pc)tl/~z,(p -- pc)S ~ ] 

r 2 = t~ -o~[(p  _ p~)tl/.z, (p _ Pc)SOl 

(14a) 

(14b) 

r = RsF(t/sz/DI, Rs/~ ) (14c) 

In Eqs. (14a), (14b) the prefactor for the scaling function no longer is t k but 
t 1/z as required (a) to be consistent with Eqs. (7) and (10). A t p  = Pc, the two 
scaling functions in Eqs. (14a) and (14b) have a finite value at zero 
arguments. 
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Alexander and Orbach (5) noted that the ratio z / D f  is about 3 /2  fo: 
various dimensions. Assuming that relation, for which some arguments car 
be given, (19'5) to be exact 

z = 3 D f / 2  (15 

we not only can relate (5) the conductivity exponent /~ to the other expo 
nents through 

tx/p = 3 d / 2  - 2 - / 3 / 2 p  (16a I 

but also have the simple relation 

fik = ( 2 -  [ ~ / u ) / ( d -  f l /u )  (16 b 

which gives k = 1/3 exactly in two dimensions. 
We now make two additional simplifying assumptions, similar t~ 

Wilke et al. (19): First, for clusters much larger than the correlation length.. 
below Pc, the relation between r, R, t, and s is independent of th~ 
correlation length, i.e., of the distance from Pc. Second, for very long time.. 
below Pc, the distance r approaches its asymptotic limit R, with a simph 
exponential. The first assumption, 

r / R ,  = f f ( t / s  3/2) (17' 

is a (questionable) "strong dynamic similarity" assumption for all "ani  
mals," i.e., for all clusters below Pc which are much larger than th~ 
correlation length. The second assumption 

log(R, - r) cc - t  ( t o m )  (18 

is an alternative to the assumption of Mitescu and Roussenq, (2) who usec 

log(Rt=o~ - R)cc  - t  ( t ~ m )  (191 

for the average over all cluster sizes. From our assumption and the relatior 
log(n,) c~ - s  for very large clusters below pc, (l~ a straightforward integra 
tion in the limit of long times gives for the average over all clusters 

log(R, - R ) cc - t2/5 (t ~ m)  (201 

independent of dimensionality d. Assumption (19) gave difficulties (a) ir 
describing the data. Wilke et a/. (19) could not clearly confirm Eq. (18) frorf 
Monte Carlo simulations on animals, whereas Fassnacht, (2~ using prelimi 
nary results of our simulations, clearly preferred Eq. (20) over Eq. (19). W~ 
will also present better data on that question. 

Needless to say, all these scaling theories are not valid far away fror~ 
the percolative phase transition. They are supposed to hold for large times 
large distances, large clusters, infinite systems, and for dimensionalities 
larger than one and smaller than six. 
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3.1. General Techniques 

The basic idea behind the computer simulation of classical diffusion 
presented here is very simple. First, we prepare a random sample (called a 
lattice relaization) by randomly occupying the sites, with probability p, in a 
simple cubic or triangular lattice. As in simple percolation studies this is 
done with the numbers zero and one, or the logical variables .TRUE. and 
.FALSE. In this way clusters of various sizes are generated automatically, 
in  contrast to the cluster growth algorithm employed, e.g., in Refs. 9, 12, 
and 21. Periodic boundary conditions usually reduce the finite-size effects. 
(The cluster growth method in principle corresponds to infinite lattices.) 

Now one occupied site is selected randomly as local origin; from here 
the ant starts its random motion. One of the six nearest-neighbor sites is 
selected randomly, and the ant is moved to this site if it is occupied; 
otherwise the ant stays at its previous place. In both cases the time is 
increased by a unit step, whether the attempt to move was successful or 
not. (2'14) The process of randomly choosing a neighbor of the current ant 
position and of attempting to move to it is repeated again and again for a 
preset number of steps, the maximum time. From the calculated rms 
distance R as function of time t at various concentrations p we calculate the 
radii, diffusivities, and their critical exponents. 

The main aim of our work was to check the reliability of earlier Monte 
Carlo simulations of percolative diffusion by making more Monte Carlo 
steps in larger lattices. Therefore we put particular emphasis in making the 
algorithm efficient, and we describe now how we did that on the CDC 
Cyber 76 scalar and the CDC Cyber 205 vector computers. We start with 
techniques common to both. All our programs were written in FORTRAN; at 
least those for the scalar computer should be applicable rather generally. 

If we take ten million steps for each ant there is no need to know all 
ten million intermediate distances. We were content in calculating and 
printing out at most 1000 distances for 1000 different times. So in following 
the particle through ten million steps, we first make 10000 steps, then 
calculate and store its position, then make the next 10000 steps, after which 
a new position is calculated, etc. Therefore the innermost loop, over 10000 
steps in this example, need not calculate many details which are needed in 
the final analysis only. We call this innermost loop 

DO 5 0 I I =  1,MX 

and describe only the structure of this loop. If MX is small, like 10, the 
efficiency is reduced, of course. For the future we recommend (22) increas- 
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ing MX, the lengths of the innermost loop, during one run by factors of 1( 
until it reaches one tenth of the maximum time. 

The whole lattice was stored on a one-dimensional array. If on a plan~ 
the ant sits on the rightmost site of line 10 it moves to the leftmost site o 
line 11, not of line 10 ("helical boundary conditions") if it is supposed t~ 
move to the right. To calculate the distance from the local origin we trea 
the ant as if it had moved to the right; the boundary conditions merel., 
repeat the lattice and do not hinder the motion. We work with L * L an( 
L * L * L sites in two and three dimensions. For example, with L = 100 oi 
the triangular lattice, the left and right neighbors of site 550 are sites 54! 
and 551, whereas the top neighbors  are 450 and 451 and the botton 
neighbors are 650 and 649. This index we call k. Then, instead of changinl 
d coordinates in d dimensions, we only have to change one index k if tN 
particle moves. 

However, if the particle sits, for example, on site 1 and is supposed t~ 
move up or to the left, then k tries to become negative; and no compute 
memory corresponds to negative index k. One could have checked at ever, 
step if the new k is smaller than 1 or larger than Ld; but that would havq 
cost time. Thus instead we stored in addition about  20 planes (or lines 
L + 1, L + 2 . . . . .  which are identical to the first 20 planes 1 , 2 , . . . ,  213 
Similarly, as planes 0 , -  1 . . . . .  - 19 we stored planes identical to plane 
L , L -  1 . . . . .  L -  19 of the real lattice. Finally two planes - 2 0  an( 
L + 21 are used which are all empty. Now we check for periodic boundar, 
conditions outside the innermost loop; e.g., if k was negative it wa 
increased by L. In the rare cases where during the MX steps of th, 
innermost loop the particle diffused to the region close to negative k, th~ 
empty plane prevented it from diffusing across the prohibited boundary 
Then the top and bot tom planes were treated as free boundaries whereas il 
general they were treated through helical boundary conditions. Therefore il 
the formulation of the innermost 10op we no longer have to deal with th, 
boundary conditions and save execution time. 

3.2. Scalar Computer Cyber 76 

On the "normal"  CDC computer Cyber 76, and similarly on othe 
CDC 7000 series machines with FORTRAN IV compiler, we can store th~ 
occupation status in a logical array IS where .TRUE. means empty an~ 
.FALSE. means occupied. The six shifts of the index k, i.e., 1, - 1, L, - k 
L - 1, and 1 - L for the triangular lattice, are stored in the array NBR o 
six elements. The array IDIST, also with an index from 1 to 6, stores ho~ 
often the particle moves to the left, to the right, etc. Outside the innermos 
loop this array then gives the squared distance through ( IDIST(1 ) -  
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IDIST(2)) �9 �9 2 + (IDIST(3) - IDIST(4)) �9 * 2 + (IDIST(5) - IDIST(6)) * * 2 
in the simple cubic lattice, and through [ ( 2 * ( I D I S T ( 1 ) - I D I S T ( 2 ) ) +  
IDIST(3) - IDIST(4) - IDIST(5) + IDIST(6)) * * 2 + 3 * (IDIST(3) - 
IDIST(4) + I D I S T ( 5 ) - I D I S T ( 6 ) ) *  *2] /4  in the triangular lattice. Our 
innermost loop is now quite trivial and took on the average about 1.2/~s: 

DO 5 0 I I = l , M X  
IN = 1 + IFIX(6.  * RANF(0))  

K N E W  = K + NBR(IN)  

IF ( IS (KNEW))  GO TO 50 

IDIST( IN)  = IDIST( IN)  + 1 

K = K N E W  
50 C O N T I N U E  

Here R A N F  is the standard random number  generator, giving real num- 
bers homogeneously distributed between zero and unity. 

However, the above program, while fast is very inefficient in its 
memory use since a full 60-bit computer word is used to store the one-bit 
information on whether or not the site is occupied. Computing time is 
nearly doubled to 2.2/zs per step, but memory saved by a factor 60, if we 
store a different site in each of the 60 bits of the word. Thus the above 
program was used for small lattices only whereas for L up to 180 in three 
dimensions each word IS(J) stored 60 sites. (We also employed then the 
slower auxiliary memory Level 2.) The innermost loop now reads as above, 
only with line 4 replaced by 

J = K N E W / 6 0  

INTS = SHIFT(IS(J) ,  K N E W  - 60 * J) 

IF ( INTL)  GO TO 50 

Here SHIFT(word,  n) is the usual function (available also on many IBM 
FORTRAN H Extended compilers through option XL) which shifts circularly 
the word by n bits to the left. I N T L  is a logical variable (true if the leftmost 
bit is one and false if it is zero) which at the beginning through EQUIVA- 
LENCE (INTS, INTL)  is put onto the same storage location as INTS. 

In both versions we checked at the beginning of each walk if the local 
origin is an isolated occupied site. Then no simulation was needed since 
that walk contributes zero to the average distance. 

Following Havlin and co-workers, we also treated intermediate posi- 
tions of the ant as starting points of a new, shorter walk. For that purpose 
we stored outside the innermost loop after every MX steps not only the 
total squared distance traveled so far, but also the d coordinates of the ant. 
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From, say, 1000 such positions we then at the end calculated 100 differen 
distances traveled in 10 * MX steps, 50 distances traveled in 20 * MX steps 
etc. We found these "Havlin averages" to be smoother than the singh 
results where all distances are measured from the true origin of the walk 

3.3. Vector Computer Cyber 205 

A "supercomputer" like the CDC Cyber 205 solves problems in a~ 
assembly-line fashion: A thousand identical operations executed on 
thousand different sets of data are done more efficiently on the vecto: 
computer than on a normal or "scalar" machine. It is necessary, however 
that data needed consecutively are stored in consecutive locations of tht 
memory and are all treated in the same way independently of each other 
In our problem we usually treated N = 512 ants in this assembly-lint 
fashion, since for each ant the same operations are executed: Selec 
randomly a neighbor, check if neighbor is occupied, move ant if yes 
Unfortunately, the number of statements now is much larger. 

CDC does not provide an efficient vector random number generator 
Their VRANF(RANFD,  N) which puts N random numbers into any arra2 
RANFD,  is in fact slower than successive calls to the usual scalar RANF 
Since a large fraction of computer time is spent generating random num 
bers we devised a specialized random number generator which produce: 
random arrays of constant length N at a rate of about 20 ns per number. (23 
Furthermore, the sequence of random numbers generated is exactly th~ 
same as with the usual RANF. For this purpose we initialize the resultint 
random vector RANFD by the standard scalar RANF code, and simulta 
neously we compute the Nth power of the multiplier, modulo 2 47, b., 
lower-word multiplications: 

DATA XSEED/X'000054F4A38933BD'/ ,  M P O W E R / 1 / ,  

1 IXMULT/84000335758957/,  IEXPON/65489 /  

D O 3 I =  1,N 

CALL Q8MPYL(XSEED, IXMULT, XSEED) 

CALL Q8MPYL(MPOWER, IXMULT, MPOWER) 

3 SAVE(I) = XSEED 

After this initialization one can produce many vectors of N random rea 
numbers between zero and unity by calling two vector instructions for eacl 
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such vector: 

CALL Q8MPYLV(X'08' , ,  SAVED,, MPOWER, ,  SAVED) 

CALL Q8PACKV(X' 10',, IEXPON,,  SAVED,, RANFD)  

The first line generates random integers SAVED between 1 and 247; the 
second li~e transforms them into real numbers RA N F D  between zero and 
unity by inserting the properly normalizing exponent field and is not 
needed  if only integers or random bits are wanted. (Here and later, 
variables ending with D are abbreviations, called descriptors, for vectors of 
length N like SAVE(l; N) and cause the statement to be executed for all N 
array elements.) Omission of the pack-statement leads to twice the speed 
(10 ns per number). All the above calls do not actually call subroutines but 
are translated directly into machine instructions by the compiler. This 
random number generator can be used only to generate sequences of N 
random numbers where N is fixed throughout the program. If not many 
different values of N occur, a number of independent such generators may 
be used to avoid these difficulties. 

In order to vectorize K N E W  = K + NBR(IN) in the above scalar 
program, we first have to put the N numbers NBR selected randomly for 
the N ants into consecutive memory locations, which is achieved by a 
QSVGATHR operation. Then we have to find out if the new possible 
positions K N E W  are occupied or not. K N E W  is a vector of indices for the 
bit string IS containing our latticel What we really would like to do is to 
gather bits with this index vector K N E W  as we did for the word index 
vector K N E W  from NBR by QSVGATHR. Unfortunately, this bit opera- 
tion is not implemented on the Cyber 205 which we regard as the most 
serious deficiency of its instruction set (bit gather would also be useful in 
the case of sparse matrix algebra). 

Thus we now implement this bit gathering by separate instructions, 
similar to the above scalar program: Two shift instructions and the 
subtraction generate from the bit index K N E W  a word index JNEW = 
K NEW /64 ,  and a bit number JSHFT within the word IS(JNEW). We then 
gather these words, move by a shift operation the relevant bit to the 
rightmost bit position, and mask all preceding bits out by a logical AND. 
(A Q8LINKV statement declares this SHIFT and AND as a linked triadic 
operation which will execute at twice the normal speed for separate 
"unlinked" operations.) A comparison with unity compresses the one-bit- 
per-word bit string into a dense bit string OCCUP which may subsequently 
be used as a control vector to reject or accept a move. The displacement 
made by one move is gathered into IXYZN, which is added to the current 
position IXYZ if OCCUP is true. Both IXYZ and IXYZN store x, y, and z 
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coordinates as 15-bit fields in one word to save time. (Thus the maximum 
allowed displacement within MX steps is 214 - -  1 .)  The full innermost loop 
now looks as follows: 

BIT OCCUPD 
DATA l O N E / 1 / ,  I S I X R / -  6 / ,  I S I X L / 6 /  

C 
C 
C 

C 

50 

I)O 50 II = 1, MX 
CALL Q8MPYLV(X'08', ,  SAVED,, MPOWER,,  SAVED) 
CALL Q8PACKV(X' 10',, IEXPON,,  SAVED,, RANFD) 
IND = 1 + VIFIX(6.*RANFD; IND) 
K N E W D  = KD + Q8VGATHR(NBRD, IND; KNEWD) 

The next 8 lines simulate the nonexisting command: 
OCCUPD = Q8VBITGATHR(ISD, KNEWD;  OCCUPD) 
C A L L  Q8SHIFTV(X'08', ,  KNEWD, ,  ISIXR,, JNEWD) 
CALL Q8SHIFTV(X'08', ,  JNEWD, ,  ISIXL,, KMODD)  
JSHFD = K N E W D  - K M O D D  
ISGAD = Q8VGATHR(ISD, JNEWD; ISGAD) 
CALL Q8LINKV(X'I  0') 
CALL Q8SHIFTV(X'00' , ,  ISGAD,,  JSHFD, ,  ISGAD) 
CALL Q8ANDV(X'09', ,  ISGAD,,  IONE,,  ISGAD) 
OCCUPD -- ISGAD.EQ. 1 

IXYZND = Q8VGATHR(NXD, IND; IXYZND) 
W H E R E  (OCCUPD) 
IXYZD = IXYZD + IXYZND 
KD = K N E W D  
END W H E R E  
C ONTINUE 

Outside this innermost loop we calculate the distances as before; to 
average over all ants we sum up the distance for each ant with the 
Q8SSUM function. 

In this way we achieved a speed of about 276 ns per step. The various 
gather operations needed slow the vector machine down to a speed of only 
8 times that of the scalar Cyber 76, below the full vector potential. 

To build up the lattice of occupied and empty sites takes an apprecia- 
ble fraction of execution time for short and medium times. In a scalar 
version it required per site about 0.7 txs on the Cyber 76 and about 1.1 /~s 
on the Cyber 205. A vectorized version, however, reduced that latter time to 
0.06 /~s. We achieved that speed by incorporating the sign bit of the 



Diffusion on Random Systems 439 

difference between the random number and the probability p into a special 
occupation vector. A vectorized logical OR put this bit into the IS words, 
which are then shifted by one bit in a vectorized form. After 64 such 
vectorized calls for random numbers, extraction of sign bits, and shifts, we 
have stored 64 sites into each of the IS words. For the triangular lattice at 
P =Pc = 1/2, an even shorter time of 0.037 #s was reached by simply 
taking the leading nontrivial bit of the random integer as the occupation 
bit. The innermost loop then was 

21 

DATA MASK/X'0000400000000000'/ at the beginning 
ICID = 0 
DO 21 II-- 1,64 
CALL Q8MPYLV(X'08',, SAVED,, MPOWER,, SAVED) 

CALL QSANDV(X'09',, SAVED,, MASK,, IOCCD) 

CALL Q8LINKV(X'10') 

CALL Q8SHIFTV(X'08',, ICID,, IONE,, ICID) 

CALL Q8ORV(X'08',, IOCCD,, ICID,, ICID) 

IS(l; N) = ICID 

Here the first call gives random integers stored in SAVED, the second call 
extracts the leading bit of this integer, the last two calls put this bit into 
ICID. ICID, SAVED, and IOCCD describe arrays of length N, where N is 
also the number of ants in the system. This increase in speed by a factor of 
20 shows Clearly the advantages of vectorization in cases where no compli- 
cated gathering operations are needed. 

From this description it is quite clear that this vector computer is quite 
clumsy in its use if one is interested in other than floating-point computa- 
tions. It would be better, if the bit-by-bit logical and shift operations would, 
in a vectorized form, be denoted by simple functions analogous to the 
Cyber 76 FORTRAN language, instead of the assembler-type statements 
Q 8 . . .  used above. Also, gather operations should be made automatically 
by the compiler, and the random number generator should become avail- 
able in a simple efficiently vectorized form. Then programs like the above 
would not run faster but would at least be easier to write down, as is 
appropriate for higher programming languages like FORTRAN. Implementa- 
tion of the bit gather operation, which here takes about half of the 
execution time, in microcode as a machine instruction would presumably 
lead to a significant increase in speed for the present program. Of course, if 
the gather operation did not exist at all, as is the case with other super- 
computers, the above altorithm would not be anywhere as fast. 
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4.1. General 

Here we present the results of our computer  simulations in L * L * L 
simple cubic and L *  L triangular lattices. We take p = 0.3117 and 0.5 in 
these two cases, and fl = 5 /36 ,  1, = 4 / 3  in two dimensions, while f l /u  = 
0.48 and  p = 0.88 in three dimensions. (24) On  the scalar computer  we went 
up to L = 180 in the cubic lattice and made  only test runs in the triangular 
case. Detailed statistics at p = 0.3117 were given in Ref. 11, and a similar 
effort was made  for p above and below Pc- On the vector computer  at 
p = 0.3117 we went up to L - - 2 5 6  where we let 500 to 1000 ants run on 
each lattice, and simulated 4 lattices up to 10 million steps, 60 up to one 
million, 100 up to 100000, and 3000 lattices up to 10000 steps. This series of 
runs consisted of a total of nearly 1011 steps, each requiring one r andom 
number,  check if neighbor is occupied, and possibly a move to this 
neighbor. As a result we get the rms average displacement R as a funct ion 
of time t, where R is measured in units of the lattice spacing, and t in j ump  
attempts. For  the triangular lattice at p = 0.5, we used L up to L = 4096, 
with 512 ants on each lattice, and used 9 lattices up to ten million steps, 50 
up to one million, and about  1000 up to 10000, and also m a n y  runs for 
L -- 1024 and L = 2816, all on the vector computer.  (Most  of the data away 

f rom Pc were produced  on the scalar machine.)  

4.2. At Three-Dimensional Threshold 

To study the diffusion at the percolation threshold in the simple cubic 
lattice, we worked on lattices of sizes L = 30, 60 . . . . .  180 on the scalar 
computer  and used L = 256 o n  the vector machine.  Figure 1 shows the 
distance R traveled by the ant  as a funct ion of time t, for L = 30, 180, and 
256. F rom these data  we determined the effective exponent  k = d ( l o g R )  
/d(logt) as a funct ion of time; the results f rom the scalar computer  were 
already given in ReL 11; with k = 0.20 + 0.01 estimated there. Figure 2a 
shows k as a funct ion of 1 /R  for L = 256. The upturn for the longest times 
was observed already at L = 60 for shorter times (~1) and presumably is a 
finite-size effect. Ignoring it we extrapolate visually to infinite times and 
distances to get k near 0.20. More  accurately, Fig. 2b gives more reliable 
data  at intermediate times, f rom which we estimate again 

k = 0.20 + 0.01 (21a) 

The increase of the effective exponent  k for very long times is a size 
effect which is easy to explain qualitatively. In  a finite lattice at Pc, a 
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Fig. 2. The exponent k versus (a) I/R and (b) t -0"25 from the data for the sample 2563 
presented in Fig. 1 at p = 0.3117, to extrapolate the result to the asymptotic limit R--> oo and 
to estimate the correction terms to the asymptotic power law (R cc tk), respectively. 
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fraction of lattices is percolating, and the rest is not. Thus for a fraction of 
our lattice realizations, the ant can travel to infinity, whereas for the other 
realizations it is confined to finite clusters. Once the ant has moved over 
distances much larger than L, the random lattice, with helical boundary 
conditions, can be regarded as a periodic structure on which ordinary 
diffusion takes place. Thus for these percolating lattices, the exponent k 
must approach 1/2 for sufficiently long times. In our rms average for the 
distance, at these very long times the large distances in the percolating 
samples dominate over the finite displacements of the confined ants. Thus 
also our average displacement R increases asymptotically with an exponent 
k = 1/2 as for normal diffusion. 

The prediction from the Alexander-Orbach relation, Eq. (16b), is 
k = 0.201 + 0.001, in good agreement with our simulation. If we do not 
assume Eq. (16b) to be valid then we can derive i~/v = 2.26 + 0.2 from Eqs. 
(10) and (21a). This result is in accord with and nearly as accurate as the 
best direct estimate (8) known to us (2.2 + 0.1), which was based on a Monte 
Carlo transfer matrix calculation involving lattice sizes up to 2 4 . 2 4 .  L. 
Our Fig. 2b then suggests a leading correction of the form 

R = t~ - 0 .9 / t  ~176176176 (21b) 

It seems quite possible that the leading corrrection term varies as 1/R, 
without an additional exponent (Fig. 2a). 

Earlier simulations (2'4'9) gave k near 0.25. We argue that the discrep- 
ancy between the scaling theory and these earlier Monte Carlo data is due 
to the fact that there the exponent k was calculated from moderately short 
times of the order of a thousand steps. As seen clearly in Fig. 2, these times 
are far from the asymptotic limit and indeed also in our work give an 
effective exponent near 0.25. Reference 12 gives an independent confirma- 
tion of this conclusion. 

The times needed to get into "equilibrium" are unusually large because 
the correction exponent is so small. Therefore, to have the R increase by 
one order of magnitude, we have to increase the time t by five orders. 
Viewed from Fig. 2a, where we useR  instead of t as the variable, our walks 
are not particularly large and on average cover at most about 35 lattice 
constants. So we have seen another example that a strong increase in 
Monte Carlo effort does not strongly reduce the error bars; it merely shows 
that earlier error bars were overly optimistic since they neglected systematic 
deviations from corrections to sealing. 

4.3. Above the Three-Dimensional Threshold 

For p > Pc we always have an infinite network along with finite 
clusters. The larger p - P c  is, the larger is the fraction of sites belonging to 
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this infinite cluster. The average asymptotic random walk behavior is 
governed by Eq. (2), i.e., R 2 ~ t .  The factor of proportionality is essentially 
the diffusivity and varies as ( p - p c )  ", since our local origins are chosen 
randomly anywhere in the system on an occupied site. Figure 3 shows how 
R 2 varies with t for various p. The asymptotic slope of these curves gives 
the diffusivity, as collected in Table I. Fitting these data to a simple power 
law in p - P c  we find a critical exponent/~ increasing slightly with system 
size L: /~ = 1.71, 1.80, and 1.85 for L = 30, 60, and 180. The statistics for 
L = 180 are as good as for the same size atpc.  However, one should not be 
optimistic on the errors in determining the slopes of R 2 versus t, particu- 
larly close to p. Also, we have no reliable data very close to p since there the 
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Fig. 3. Average mean square displacement R 2 versus t. The numbers  on the data sets give 

P - Pc. Each sample had 20 lattice realizations with 200 ants each. 

Table I. The Values of Diffusivity (0.5dR 2/dt 
for t--> ~ )  Calculated from the Data for R forp > Pc 

for L �9 L �9 L Samples with L = 30, 60 and 180. a 

Diffusion constant  dR 2/ dt 

Ap 303 603 1803 

0.01 0.0015 0.0013 
0.02 0.0056 0.0050 0.0041 
0.03 0.0120 0.0105 
0.04 0.0200 0.0160 0.0173 
0.05 0.0270 0.0250 0.0253 
0.06 0.0390 0.0370 0.0355 
0.07 0.0480 0.0520 0.0456 

Exponent:  1.71 1.80 1.85 

~The exponent /~ in (diffusivity)oc ( p - p c ) ~ ,  was then 
evaluated from these data of diffusivity in each of the 
samples. 
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normal diffusion behavior sets in too late to be observable. The exponent 
just quoted is simply taken from the slope of a log-log plot, which neglects 
corrections to scaling. Therefore it is not surprising that this estimate is 
about 10% too low compared with our more accurate determination, 
/~ = 2;0 + 0,2, in the preceding section. (The data for L = 30 and 60 are 
rather poor but accurate enough  to provide an idea of the trend with 
system size.) 

4.4 .  B e l o w  the  T h r e e - D i m e n s i o n a l  T h r e s h o l d  

For  p < Pc al l  clusters are f ini te. Thus  i f  we a l low the ants to execute 
random walk motions for sufficiently long times, then the displacement R 
will saturate to a value connected with an average cluster radius, Eqs. (t)  
and (7). A typical growth curve is shown in Fig. 4. Fassnacht (2~ recently 
has studied the approach of R to its saturation value and estimated the 
exponent w in Eq. (1) as about 0.4: 

log[R~ - R(t) l  ec - t  0"4+-0"1 (22) 

Using somewhat better statistics, we show in Fig. 5 that indeed w = 0.4 fits 
t h e  data better than w = 1. Mitescu and Roussenq (2) determined the shape 
of the approach to equilibrium by a formula with several free parameters 
but with a fixed w = 1 which we regard questionable. Moreover, w ~ 0.4 is 
in nice agreement with the speculation mentioned in Section 2, which gives 
w = 2 /5  for all dimensions. 

The leading term in Eq. (1), viz. 

R 2 cc (Pc - P)-m 

can be analyzed more reliably. Table II gives our estimates for size L = 30, 
60, and 180. A simple power law fit gives m = 1.2, 1.1, and 1.2 for these 
three sizes. Again the statistics on the small lattices are worse than for 
L = 180. Our estimate m ~ 1.2 is consistent with the theoretical prediction 

Fig. 4. 
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Average rms displacement R versus t for the 1803 samples, 20 realizations with 500 
ants each, for the values o fp  - Pc- indicated in the figure. 
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Fig. 5. Plots of A = ln(R~ - R 2) versus t ~ ( + )  and t (e): (a) Sample size 1803,1o = 0.2717 
(50 lattices with 500 ants each), and (b) sample size 28162, p = 0.4 (6 lattices with 500 ants 
each). 

Table II. The Saturation Values of the 
rms Displacement R (the Average 

Cluster Radii) at Various Concentrations p below 
Percolation Threshold for L �9 L �9 L 
Samples with L = 30, 60, and 180. a 

R 

~.p 303 603 1803 

0.01 8.60 8,00 8.50 
0.02 6.50 6.00 6.20 
0.03 4.80 4.75 4.68 
0.04 4.00 4,00 3.87 
0.05 3.30 3.00 3.22 

Exponent: 1.20 1.16 1.39 

'~The exponent m in R 2 oc ( P c -  P) . . . .  was evalu- 
ated from these data of R in each sample. 
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m = 1.34 + 0.03 from Eq. (7), taking into account the unknown systematic 
errors in our analysis due to our neglect of corrections to scaling. 

4.5. Finite-Size Scaling 

Let us now see how our data on finite lattices fit the finite-size scaling 
laws widely discussed in the literature. (25) In a finite system the correlation 
length, which in infinite systems diverges as (p -pc) -~, has to remain finite 
and will approach a maximum near Pc of the order of L, the linear 
dimension of the system. Similarly, any other quantity diverging or vanish- 
ing with some power of Ip -&[, will also stay finite atpc in a finite system. 
However, if we express this other quantity not through powers of p - Pc but 
of 4, then this relation will still remain valid, apart  from a constant factor, 
at Pc even in a finite system. 

In our case, the diffusivity D(p), which in an infinite system varies as 
(p -pc)~'cr-~-~'/~, therefore is expected to be about L -~/~ at Pc in a finite 
lattice. More generally, finite-size scaling expects 

D(p, L) = L-~/~a#[ (p - pc)L '/~ ] (23a) 

and analogously, 

R 2= Lm/~'t'[(p-p~)L '/~] (23b) 
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Fig. 6. Plots of / )=(d i f fus iv i ty )L  "/~ versus ~ = ] p - p c ] L  ~/" (full symbols) and /~2 
= R 2 L  m/,, versus /~ (empty symbols) for samples L*  L*  L with L = 30 (dots), 60 (tri- 
angles), 180 (squares). We used ~ /u  = 2.0 and m/~, = 1.53. 
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Figure 6 shows for L = 30, 60, and 180 the diffusivity and squared dis- 
tance, normalized by L -~/~ and L re~p, respectively, versus the argument 
( p - p ) L  1/~ of the scaling functions in Eq. (23). The agreement with 
finite-size scaling is reasonable; all the points for the different sample sizes 
lie almost on the same curves. 

4.6. At the Two-Dimens iona l  Threshold  

Nearly all simulations in two dimensions were made on the vector 
computer  with 512 ants on each lattice. We concentrated on p --Pc. Since 
Pc = 1/2  and also the expected k = 1/3 are known or hoped to be exact, it 
is more practical to work with the scaled distance R / t  1/3. This scaled 
distance should approach a constant for infinite time in infinite lattices. 
Figure 7 shows our data for L -- 2816 and L = 4096 for the scaled distance 
as a function of log(t). Up to t - -100000  they seem to confirm this 
relaxation towards a plateau. However, beyond that time a decrease of the 
scaled distance was observed for L = 2816, somewhat larger than the 
statistical error. The same downturn occurred an order of magnitude later 
for L = 4096. In principle for very large times the displacement in finite 
systems should be larger than in infinite lattices due to our helical bound- 
ary conditions (see Section 4.2). The larger the lattice is, the later this 
upward deviation should occur. Therefore an increase of the scaled dis- 
tance with time could easily be discarded as a finite-size effect. We observe 
the opposite trend, a decrease. Very small systems show clearly that the 
distance for small times is smaller, and not larger, than in large systems. It 
is therefore possible that the finite size of this triangular lattice decreases R 
for intermediate times and increases R for very long times. (For L = 1024 
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Fig. 7. R/t  I/3 versus t plots  for L * L lat t ices with L = 4096 and  512 ants  on each lat t ice 

real izat ion.  The  number s  on each da ta  set in this semi logar i thmic  plot  give the n u m b e r  of 
lattices.  The  solid line is our  best  fit, the dashed  l ine cor responds  to/~ = v. The  dashed-do t t ed  
l ine ind ica tes  the finite-size downtu rn  for L = 2816. 
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and t > 10 5, we did find such an increase.) A quantitative analysis was not 
possible since the finite-size effects in the region of interest are mixed too 
strongly with the finite-time effects (corrections to scaling). Thus we only 
conclude that the downward trend at the end of the curves should not be 
relied upon, (Some indications of a nonmonotonic size effect were also seen 
in Fig. 1 for three dimensions.) 

If we took the final downturn seriously, we would find our  data 
compatible with the hypothesis # = v, which corresponds to k = 0.328. This 
exponent corresponds to the strong negative slope shown in Fig. 7. But 
since we prefer to ignore this size-dependent downturn, we regard the line 
with the smaller negative slope in that figure to be a much better estimate. 
It corresponds to 

k = 0.332 ___ 0.002 (24) 

and does not exclude the possibility k = 1/3, which is the Alexander-  
Orbach prediction. This estimate is exactly the same as that of Derrida and 
Vannimenus: /~ = 1.28 ___ 0.02, obtained by a transfer matrix simulation. (26) 
We encourage more computational effort with that method to determine/x 
better. (See our note added in proof.) 

The approach to the plateau in Fig. 7 again gives a rough estimate of 
the correction exponent: 

R =/1/3(0.99 - 0 .4 / t  ~176176 + . . .  ) (25) 

The coefficient 0.99 o f  the leading term in Eq. (25), as determined 
from 30 < t < 104, seems slightly higher than the average 0.98 found from 
the less accurate data at much longer times. The exponent 0.45 of the 
correction term is about twice as large as in three dimensions. Therefore the 
corrections are for large times much smaller in two than in three dimen- 
sions, which makes it now easier to determine the leading term but more 
difficult to determine the corrections. 

The cluster numbers, n~, at p =Pc in two dimensions, vary as (27) s -~ 
(1 - c o n s t / s  a) with possibly ~2 = 1 - o = 0.6. Since times t scale as s 3/2 
according to Eq. (17), this correction would correspond to a factor (1 + 
const ' / t~ in our case, compatible with Eq. (25). 

Finally, the approach to equilibrium below p is again consistent with 
the speculation in Section 2, that log[Ro~ - R(t)] varies as 1 / t  2/5 indepen- 
dently of dimensionality. Our data were already included in Fig. 5. 

5. CONCLUSION 

We have studied in detail the problem of classical diffusion on random 
systems below, at, and above the percolation threshold by Monte Carlo 
studies of triangular and simple cubic lattices. Earlier discrepancies be- 
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tween scaling theory and computer experiment were shown to be due to too 
short times or too small lattices. Our results for the conductivity exponent 
/~, calculated by dynamical scaling from our data, are in good agreement 
with other recent results and with the hypothesis of Alexander and Orbach: 
/z = 2.0 + 0.2 in three and 1.28 + 0.02 in two dimensions. A correction-to- 
scaling exponent was estimated at p =Pc  to be appreciably larger in the 
triangular lattice than in the cubic lattice. The approach to the finite 
asymptotic value for the displacement below p seems to be consistent with 
a speculation that the corresponding exponent is 2 / 5  independent of 
dimensionality. For future work in two dimensions it would be desirable to 
use larger lattices or to work with a different algorithm corresponding to 
infinite lattices. Work in four dimensions, (22) on pair diffusion in two and 
three dimensions, (28) and on biased diffusion ~29) is in progress. 

Part of the simulations were made on a Cyber 76 scalar computer and 
part  on a Cyber 205 vector computer. We described the computer program 
in sufficient detail to introduce the reader to the difficulties of vector 
programming, which paid off in a gain of speed by about one order of 
magnitude. 

We remark that it would have saved computer time had a much larger 
memory  been available on the Cyber 205. F o r  then we could have made all 
simulations on a much larger lattice, instead of trying without much success 
to analyze for finite-size effects in various smaller lattice sizes. 
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NOTE ADDED IN PROOF 

The time for one diffusion step on the vector computer was reduced to 
218 ns by using the "register gather" trick described by S. Wansleben and 
J. G. Zabolitzky, preprint; it was further reduced to 167 ns if each site is 
stored in one word, and not in one bit. For two dimensions, J. G. 
Zabolitzky (preprint) found i x / v  ~ 0.97 with the method of Ref. 26, which 
leads to k = 0.330 for the exponent in Fig. 7, more accurate than our 
Eq. (24). 
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