
Journal of Statistical Physics, VoL 34, Nos. 3/4, 1984

Diffusion on Random Systems above, below, and at
Their Percolation Threshold in Two and
Three Dimensions

R. B. Pandey, 1'2 D. Stauffer, 1 A. Margolina, 3 and J. G. Zabolitzky I

Received September 22, 1983

A detailed Monte Carlo study is presented for classical diffusion (random walks)
on random L * L triangular and L * L * L simple cubic lattices, with L up to
4096 and 256, respectively. The speed of a Cyber 205 vector computer is found
to be about one order of magnitude larger than that of a usual CDC Cyber 76
computer. To reach the asymptotic scaling regime, walks with up to 10 million
steps were simulated, with about 10 jl steps in total for L = 256 at the percola-
tion threshold. We review and extend the dynamical scaling description for the
distance traveled as function of time, the diffusivity above the threshold, and the
cluster radius below. Earlier discrepancies between scaling theory and computer
experiment are shown to be due to insufficient Monte Carlo data. The conduc-
tivity exponent /~ is found to be 2.0 _+ 0.2 in three and 1.28 +_ 0.02 in two
dimensions. Our data in three dimensions follow well the finite-size scaling
theory. Below the threshold, the approach of the distance traveled to its
asymptotic value is consistent with theoretical speculations and an exponent 2/5
independent of dimensionality. The correction-to-scaling exponent at Pc seems
to be larger in two than in three dimensions.

KEY WORDS: Random walk; percolation; conductivity; scaling; fractals;
Monte Carlo; FORTRAN programs; supercomputer.

1. I N T R O D U C T I O N

T h e " a n t in the l a b y r i n t h " of de G e n n e s (1) has b e c o m e a c o n v e n t i o n a l t e r m

to d i scuss the p r o b l e m of c lass ica l d i f f u s i o n in r a n d o m p e r c o l a t i n g sys-

t ems . (2-8) H e r e o n e s tud ies t he r a n d o m wa lk m o t i o n of pa r t i c l e s o n the

1 Institute of Theoretical Physics, Cologne University, 5000 K61n 41, West Germany.
2 Now at the University of Cambridge, Department of Physics, Cavendish Laboratory,

Madingley Road, Cambridge, CB3 0HE, U.K.
3 Now at Department of Chemical Engineering, Princeton University, Princeton, New Jersey

08544, USA.

427
0022-4715/84/0200-0427503.50/0 �9 1984 Plenum Publishing Corporation

428 Pandey et al

random clusters formed by connecting the neighboring open sites (in sit~
percolation) or allowed bonds (in bond percolation), which are distribute(
randomly, with probability p, on a lattice. While some workers restrict th,
motion of an ant only on the "infinite" percolating clusters for p above Pc
others allow it to execute random walks on any cluster chosen randomly
Here, we follow the latter "liberal" approach. The range of motion i
limited below Pc where all clusters are finite; the ants may travel to infinit,
only on the infinite cluster which exists for p >/Pc along with finite clusters

More quantitatively, if the ant starts for p < Pc from an arbitrar2
origin, the mean square displacement R 2= (rZ(t)) after a long time
approaches

R 2 = R ~ A e x p [- (t / T) w] + . . . (1

where A is some p-dependent constant, R~ is the saturation value for t
and is some average cluster radius diverging at the percolation threshok
with a critical exponent m. Also the characteristic time T diverges atpc. Fo
P > Pc, R grows with time asymptotically according to a diffusion law:

dR 2 / dt = const + B exp [- (t / T ') w'] + " ' " (2

Right at p --Pc, the asymptotic behavior of R(t) is presumed to follow al
anomalous diffusion law (2)

R e c t k + . . . (3

Although the direct study of diffusion by random walk motion on
regular lattice is a well-known problem, its connection to the conductivit,
of a random percolating system, particularly at Pc, has been made onl,
recently. The scaling description of fractals (3) has added greatly to th,
interest in studying diffusion on random networks. (4'5~ Gefen et al. (4
generally derived scaling relations among the exponents describing conduc
tivity and percolative quantities. This type of scaling approach is thq
percolation analog of dynamical scaling, as developed for example for spi~
diffusion in magnets near the Curie points. (6) Mitescu and Roussenq haw
recently studied the diffusion on two- and three-dimensional lattices (2)
they raise serious objections regarding these relations among exponents, h
their Monte Carlo simulations, where they average over all cluster sizes, thq
critical exponent m for R was found in three dimensions to be about 1.65 ii
contradiction to the scaling prediction 21, - 13 = 1.3. Second, they foun(
the diffusivity D above Pc to vanish with an exponent 1.7 whereas it i
supposed to vanish as the conductivity with an exponent n e a r 2. (7'8) Third
their best estimate for the critical exponent k at p - p ~ was about 0.25 a
opposed to the theoretical prediction k = 0.2. Some of these discrepancie
also appeared in the different type of Monte Carlo simulation by Be1

Diffusion on Random Systems 429

Avraham and Havlin (9) (see also Kutner and Kehr(4)). Thus there was the
danger that the whole scaling theory of percolation clusters (1~ had to be
reexamined in view of these independent contradictions with Monte Carlo
experiment.

To shed more light on these discrepancies between theory and com-
puter experiment, we have performed a detailed simulation for diffusion on
the simple cubic lattice, and a less detailed one on the triangular lattice. We
used much longer times t (10 million steps) than before, lattices much larger
(17 million sites) than those employed by Mitescu and Roussenq, and a
better computer (CDC Cyber 76 scalar computer at Cologne and CDC
Cyber 205 vector computer at Bochum). Also, our FORTRAN program
worked more efficiently, taking an execution time of about 2/~s per step in
case of the scalar machine and about 0.3/~s per step in case of the vector
machine. The computational aspects in particular of vector computers were
one reason why this problem was chosen by us. We will see later that this
effort paid off by resolving some of the discrepancies and confirming much
better the scaling theory of percolative diffusion.

In the following section we describe briefly the scaling description to
facilitate the reader's understanding. Section 3 describes the computer
programs used, and Section 4 our results, which are summarized in Section
5. A short note using some of our results at the three-dimensional percola-
tion threshold was published before (11); its main conclusion was confirmed
by Havlin and Ben Avraham. (12)

2. S C A L I N G T H E O R Y

In this section we relate the various power laws and exponents men-
tioned in the previous section by the scaling hypothesis; mostly we review
known results.(2'4) The random walks on randomly grown clusters involve
two independent random processes: first, the fluctuation in displacement R
with respect to time, and second the spatial fluctuations of the occupied
sites. Thus we have to average over many walks on the same lattice, and
then also over many lattices. This second average is not needed in diffusion
on deterministic fractals and similar structures. (13) For our case an ant
(unbiased random walker) starts its random motion from a randomly
selected occupied site (local orgin). From then on its motion is restricted to
the cluster to which the local origin belongs; if it happened to be an
isolated site the ant never moves. Many ants walk on each lattice. If a local
origin belongs to a cluster containing s sites, then the rms average distance
from the origin will approach the radius of gyration R of that cluster (apart
from a constant factor) since all sites are visited, for long times, with equal
probability. (14) The probability that the local origin belongs to such an s

430 Pandey et a

cluster is n,s, where n s is the average number, per lattice site, of s cluster~
Thus the average displacement R involves a sum over all cluster sizes:

R 2 = 2 R 2 n s s (t ~ o o , p < p c) (4

The usual scaling assumption for the cluster numbers is (1~

", = s - 7 [(P - P c) s ~ + "'" (5

where �9 = 2 + 1/6, o = 1/f16, and fl and 6 are the usual critical exponenl
for percolation. Analogously one may postulate for the rms average radiu
of gyration, R s, of an s cluster

R, = g[(e - (6

where ~ cc [P -P~l ~ is the correlation or connectivity length.
Replacing the sum in Eq. (4) by an integral from zero to infinity an,

using fl = (~- - 2) / o one finds

R2 ec (pc - p) - ' , m = 2v - fi (7

for the average displacement below Pc after very long times. Numericall3
Mitescu and Roussenq (2) found m = 2v - f l / 3 to be a better approxime
tion. This deviation from theory thus puts into jeopardy not only dynamic~
scaling but also the above static scaling assumptions, Eqs. (5), (6), an,
requires, if confirmed, a reconsideration of the whole scaling theory c
percolation clusters. (l~

Equation (7) is only a special case. More generally one can make th
dynamical scaling assumption (4'9)

R = t"H(t/ z) (So

or equivalently,

R = tkI4[(p - pc) t l/"z] (8b

For large negative arguments x, this scaling function / t (x) varies a
(- x) -k~z in order to give the time-independent result of Eq. (7); thu
z k -- m / 2 p = 1 - / ~ / 2 u . For large positive arguments, on the other hanc
the diffusion law, Eq. (2) has to be recovered, requir ing/4(x) to vary fc
large positive arguments as x (1/2-k)~z. Thus for long times above Pc w
have

R 2 oc_ ~z(2k- I) t c~ (p - pc) ~z(1-2k)t (9

On the other hand, Einstein's relation between mobility and diffusivit
requires the latter to vary as (p - p)~, where t~ (often also called t) is th
critical exponent for the conductivity of random resistor networks. (1~ Thu
/~ = pz(1 - 2k) = zu - 2t, + fi, using the above z k = 1 - / ~ / 2 p . We hav

Diffusion on Random Systems 431

therefore rederived (4)

and

z = 2 + (/ ~ - / 3) / p (10)

2k = (2 p + . (11)

Right at p = Pc, a simple power law, Eq. (3), relates R and t, and
therefore the scaling function H(x) approaches a finite value for small
arguments. Since generally for walks on a lattice a fractal dimension can be
defined through (3)

radius oc (time) z)' (12)

we may call 1 / k the fractal dimension D ' of this random walk on a
random lattice at its percolation threshold. Above Pc, this fractal dimension
is 2, as for random walks on a periodic lattice, and below pc it is infinite. (Is)
Note that the fractal dimension D' of the walks at p =Pc differs from the
fractal dimension Df of the clusters on which the walk occurs at p = pc(3):

RsOC S'/D:, Df= d- fl/u= d/(l + I/8) (13)

The fractal dimensionality D is related to the fracton or spectral dimension-
ality 2Df/(2 + O) = 2 D J z which in turn can be evaluated from the num-
ber of visited different sites of the random walk. (15-18)

Of course, one can also define the above scaling assumption with the
help of the diffusivity dR2/d t instead of with R. Then (4) dR2//dt varies as
(- 0 above pc, and as R -0 a tpc ' where O = (/z - / 3) / / , from Eq. (10), and
z = 2 + 0 .

For diffusion within an average cluster of s sites, the scaling assump-
tion contains (p - pc)s ~ as an additional variable. (4:9) We denote the rms
distance for one fixed cluster size s by r, instead of R for the average over
all clusters. Equation (8a) then has a counterpart in

or

or

r = tl/zh[(10 -- pc)tl/~z,(p -- pc)S ~]

r 2 = t~ -o~[(p _ p~)tl/.z, (p _ Pc)SOl

(14a)

(14b)

r = RsF(t/sz/DI, Rs/~) (14c)

In Eqs. (14a), (14b) the prefactor for the scaling function no longer is t k but
t 1/z as required (a) to be consistent with Eqs. (7) and (10). A t p = Pc, the two
scaling functions in Eqs. (14a) and (14b) have a finite value at zero
arguments.

432 Pandey et al

Alexander and Orbach (5) noted that the ratio z / D f is about 3 /2 fo:
various dimensions. Assuming that relation, for which some arguments car
be given, (19'5) to be exact

z = 3 D f / 2 (15

we not only can relate (5) the conductivity exponent /~ to the other expo
nents through

tx/p = 3 d / 2 - 2 - / 3 / 2 p (16a I

but also have the simple relation

fik = (2 - [~ / u) / (d - f l /u) (16 b

which gives k = 1/3 exactly in two dimensions.
We now make two additional simplifying assumptions, similar t~

Wilke et al. (19): First, for clusters much larger than the correlation length..
below Pc, the relation between r, R, t, and s is independent of th~
correlation length, i.e., of the distance from Pc. Second, for very long time..
below Pc, the distance r approaches its asymptotic limit R, with a simph
exponential. The first assumption,

r / R , = f f (t / s 3/2) (17'

is a (questionable) "strong dynamic similarity" assumption for all "ani
mals," i.e., for all clusters below Pc which are much larger than th~
correlation length. The second assumption

log(R, - r) cc - t (t o m) (18

is an alternative to the assumption of Mitescu and Roussenq, (2) who usec

log(Rt=o~ - R)cc - t (t ~ m) (191

for the average over all cluster sizes. From our assumption and the relatior
log(n,) c~ - s for very large clusters below pc, (l~ a straightforward integra
tion in the limit of long times gives for the average over all clusters

log(R, - R) cc - t2/5 (t ~ m) (201

independent of dimensionality d. Assumption (19) gave difficulties (a) ir
describing the data. Wilke et a/. (19) could not clearly confirm Eq. (18) frorf
Monte Carlo simulations on animals, whereas Fassnacht, (2~ using prelimi
nary results of our simulations, clearly preferred Eq. (20) over Eq. (19). W~
will also present better data on that question.

Needless to say, all these scaling theories are not valid far away fror~
the percolative phase transition. They are supposed to hold for large times
large distances, large clusters, infinite systems, and for dimensionalities
larger than one and smaller than six.

Diffusion on Random Systems

3. METHOD

433

3.1. General Techniques

The basic idea behind the computer simulation of classical diffusion
presented here is very simple. First, we prepare a random sample (called a
lattice relaization) by randomly occupying the sites, with probability p, in a
simple cubic or triangular lattice. As in simple percolation studies this is
done with the numbers zero and one, or the logical variables .TRUE. and
.FALSE. In this way clusters of various sizes are generated automatically,
in contrast to the cluster growth algorithm employed, e.g., in Refs. 9, 12,
and 21. Periodic boundary conditions usually reduce the finite-size effects.
(The cluster growth method in principle corresponds to infinite lattices.)

Now one occupied site is selected randomly as local origin; from here
the ant starts its random motion. One of the six nearest-neighbor sites is
selected randomly, and the ant is moved to this site if it is occupied;
otherwise the ant stays at its previous place. In both cases the time is
increased by a unit step, whether the attempt to move was successful or
not. (2'14) The process of randomly choosing a neighbor of the current ant
position and of attempting to move to it is repeated again and again for a
preset number of steps, the maximum time. From the calculated rms
distance R as function of time t at various concentrations p we calculate the
radii, diffusivities, and their critical exponents.

The main aim of our work was to check the reliability of earlier Monte
Carlo simulations of percolative diffusion by making more Monte Carlo
steps in larger lattices. Therefore we put particular emphasis in making the
algorithm efficient, and we describe now how we did that on the CDC
Cyber 76 scalar and the CDC Cyber 205 vector computers. We start with
techniques common to both. All our programs were written in FORTRAN; at
least those for the scalar computer should be applicable rather generally.

If we take ten million steps for each ant there is no need to know all
ten million intermediate distances. We were content in calculating and
printing out at most 1000 distances for 1000 different times. So in following
the particle through ten million steps, we first make 10000 steps, then
calculate and store its position, then make the next 10000 steps, after which
a new position is calculated, etc. Therefore the innermost loop, over 10000
steps in this example, need not calculate many details which are needed in
the final analysis only. We call this innermost loop

DO 5 0 I I = 1,MX

and describe only the structure of this loop. If MX is small, like 10, the
efficiency is reduced, of course. For the future we recommend (22) increas-

434 Pandey et al

ing MX, the lengths of the innermost loop, during one run by factors of 1(
until it reaches one tenth of the maximum time.

The whole lattice was stored on a one-dimensional array. If on a plan~
the ant sits on the rightmost site of line 10 it moves to the leftmost site o
line 11, not of line 10 ("helical boundary conditions") if it is supposed t~
move to the right. To calculate the distance from the local origin we trea
the ant as if it had moved to the right; the boundary conditions merel.,
repeat the lattice and do not hinder the motion. We work with L * L an(
L * L * L sites in two and three dimensions. For example, with L = 100 oi
the triangular lattice, the left and right neighbors of site 550 are sites 54!
and 551, whereas the top neighbors are 450 and 451 and the botton
neighbors are 650 and 649. This index we call k. Then, instead of changinl
d coordinates in d dimensions, we only have to change one index k if tN
particle moves.

However, if the particle sits, for example, on site 1 and is supposed t~
move up or to the left, then k tries to become negative; and no compute
memory corresponds to negative index k. One could have checked at ever,
step if the new k is smaller than 1 or larger than Ld; but that would havq
cost time. Thus instead we stored in addition about 20 planes (or lines
L + 1, L + 2 which are identical to the first 20 planes 1 , 2 , . . . , 213
Similarly, as planes 0 , - 1 - 19 we stored planes identical to plane
L , L - 1 L - 19 of the real lattice. Finally two planes - 2 0 an(
L + 21 are used which are all empty. Now we check for periodic boundar,
conditions outside the innermost loop; e.g., if k was negative it wa
increased by L. In the rare cases where during the MX steps of th,
innermost loop the particle diffused to the region close to negative k, th~
empty plane prevented it from diffusing across the prohibited boundary
Then the top and bot tom planes were treated as free boundaries whereas il
general they were treated through helical boundary conditions. Therefore il
the formulation of the innermost 10op we no longer have to deal with th,
boundary conditions and save execution time.

3.2. Scalar Computer Cyber 76

On the "normal" CDC computer Cyber 76, and similarly on othe
CDC 7000 series machines with FORTRAN IV compiler, we can store th~
occupation status in a logical array IS where .TRUE. means empty an~
.FALSE. means occupied. The six shifts of the index k, i.e., 1, - 1, L, - k
L - 1, and 1 - L for the triangular lattice, are stored in the array NBR o
six elements. The array IDIST, also with an index from 1 to 6, stores ho~
often the particle moves to the left, to the right, etc. Outside the innermos
loop this array then gives the squared distance through (IDIST(1) -

Diffusion on Random Systems 435

IDIST(2)) �9 �9 2 + (IDIST(3) - IDIST(4)) �9 * 2 + (IDIST(5) - IDIST(6)) * * 2
in the simple cubic lattice, and through [(2 * (I D I S T (1) - I D I S T (2)) +
IDIST(3) - IDIST(4) - IDIST(5) + IDIST(6)) * * 2 + 3 * (IDIST(3) -
IDIST(4) + I D I S T (5) - I D I S T (6)) * *2] /4 in the triangular lattice. Our
innermost loop is now quite trivial and took on the average about 1.2/~s:

DO 5 0 I I = l , M X
IN = 1 + IFIX(6. * RANF(0))

K N E W = K + NBR(IN)

IF (IS (KNEW)) GO TO 50

IDIST(IN) = IDIST(IN) + 1

K = K N E W
50 C O N T I N U E

Here R A N F is the standard random number generator, giving real num-
bers homogeneously distributed between zero and unity.

However, the above program, while fast is very inefficient in its
memory use since a full 60-bit computer word is used to store the one-bit
information on whether or not the site is occupied. Computing time is
nearly doubled to 2.2/zs per step, but memory saved by a factor 60, if we
store a different site in each of the 60 bits of the word. Thus the above
program was used for small lattices only whereas for L up to 180 in three
dimensions each word IS(J) stored 60 sites. (We also employed then the
slower auxiliary memory Level 2.) The innermost loop now reads as above,
only with line 4 replaced by

J = K N E W / 6 0

INTS = SHIFT(IS(J) , K N E W - 60 * J)

IF (INTL) GO TO 50

Here SHIFT(word, n) is the usual function (available also on many IBM
FORTRAN H Extended compilers through option XL) which shifts circularly
the word by n bits to the left. I N T L is a logical variable (true if the leftmost
bit is one and false if it is zero) which at the beginning through EQUIVA-
LENCE (INTS, INTL) is put onto the same storage location as INTS.

In both versions we checked at the beginning of each walk if the local
origin is an isolated occupied site. Then no simulation was needed since
that walk contributes zero to the average distance.

Following Havlin and co-workers, we also treated intermediate posi-
tions of the ant as starting points of a new, shorter walk. For that purpose
we stored outside the innermost loop after every MX steps not only the
total squared distance traveled so far, but also the d coordinates of the ant.

436 Pandey el al

From, say, 1000 such positions we then at the end calculated 100 differen
distances traveled in 10 * MX steps, 50 distances traveled in 20 * MX steps
etc. We found these "Havlin averages" to be smoother than the singh
results where all distances are measured from the true origin of the walk

3.3. Vector Computer Cyber 205

A "supercomputer" like the CDC Cyber 205 solves problems in a~
assembly-line fashion: A thousand identical operations executed on
thousand different sets of data are done more efficiently on the vecto:
computer than on a normal or "scalar" machine. It is necessary, however
that data needed consecutively are stored in consecutive locations of tht
memory and are all treated in the same way independently of each other
In our problem we usually treated N = 512 ants in this assembly-lint
fashion, since for each ant the same operations are executed: Selec
randomly a neighbor, check if neighbor is occupied, move ant if yes
Unfortunately, the number of statements now is much larger.

CDC does not provide an efficient vector random number generator
Their VRANF(RANFD, N) which puts N random numbers into any arra2
RANFD, is in fact slower than successive calls to the usual scalar RANF
Since a large fraction of computer time is spent generating random num
bers we devised a specialized random number generator which produce:
random arrays of constant length N at a rate of about 20 ns per number. (23
Furthermore, the sequence of random numbers generated is exactly th~
same as with the usual RANF. For this purpose we initialize the resultint
random vector RANFD by the standard scalar RANF code, and simulta
neously we compute the Nth power of the multiplier, modulo 2 47, b.,
lower-word multiplications:

DATA XSEED/X'000054F4A38933BD'/ , M P O W E R / 1 / ,

1 IXMULT/84000335758957/, IEXPON/65489 /

D O 3 I = 1,N

CALL Q8MPYL(XSEED, IXMULT, XSEED)

CALL Q8MPYL(MPOWER, IXMULT, MPOWER)

3 SAVE(I) = XSEED

After this initialization one can produce many vectors of N random rea
numbers between zero and unity by calling two vector instructions for eacl

Diffusion on Random Systems 437

such vector:

CALL Q8MPYLV(X'08' , , SAVED,, MPOWER, , SAVED)

CALL Q8PACKV(X' 10',, IEXPON,, SAVED,, RANFD)

The first line generates random integers SAVED between 1 and 247; the
second li~e transforms them into real numbers RA N F D between zero and
unity by inserting the properly normalizing exponent field and is not
needed if only integers or random bits are wanted. (Here and later,
variables ending with D are abbreviations, called descriptors, for vectors of
length N like SAVE(l; N) and cause the statement to be executed for all N
array elements.) Omission of the pack-statement leads to twice the speed
(10 ns per number). All the above calls do not actually call subroutines but
are translated directly into machine instructions by the compiler. This
random number generator can be used only to generate sequences of N
random numbers where N is fixed throughout the program. If not many
different values of N occur, a number of independent such generators may
be used to avoid these difficulties.

In order to vectorize K N E W = K + NBR(IN) in the above scalar
program, we first have to put the N numbers NBR selected randomly for
the N ants into consecutive memory locations, which is achieved by a
QSVGATHR operation. Then we have to find out if the new possible
positions K N E W are occupied or not. K N E W is a vector of indices for the
bit string IS containing our latticel What we really would like to do is to
gather bits with this index vector K N E W as we did for the word index
vector K N E W from NBR by QSVGATHR. Unfortunately, this bit opera-
tion is not implemented on the Cyber 205 which we regard as the most
serious deficiency of its instruction set (bit gather would also be useful in
the case of sparse matrix algebra).

Thus we now implement this bit gathering by separate instructions,
similar to the above scalar program: Two shift instructions and the
subtraction generate from the bit index K N E W a word index JNEW =
K NEW /64 , and a bit number JSHFT within the word IS(JNEW). We then
gather these words, move by a shift operation the relevant bit to the
rightmost bit position, and mask all preceding bits out by a logical AND.
(A Q8LINKV statement declares this SHIFT and AND as a linked triadic
operation which will execute at twice the normal speed for separate
"unlinked" operations.) A comparison with unity compresses the one-bit-
per-word bit string into a dense bit string OCCUP which may subsequently
be used as a control vector to reject or accept a move. The displacement
made by one move is gathered into IXYZN, which is added to the current
position IXYZ if OCCUP is true. Both IXYZ and IXYZN store x, y, and z

438 Pandey et ai

coordinates as 15-bit fields in one word to save time. (Thus the maximum
allowed displacement within MX steps is 214 - - 1 .) The full innermost loop
now looks as follows:

BIT OCCUPD
DATA l O N E / 1 / , I S I X R / - 6 / , I S I X L / 6 /

C
C
C

C

50

I)O 50 II = 1, MX
CALL Q8MPYLV(X'08', , SAVED,, MPOWER,, SAVED)
CALL Q8PACKV(X' 10',, IEXPON,, SAVED,, RANFD)
IND = 1 + VIFIX(6.*RANFD; IND)
K N E W D = KD + Q8VGATHR(NBRD, IND; KNEWD)

The next 8 lines simulate the nonexisting command:
OCCUPD = Q8VBITGATHR(ISD, KNEWD; OCCUPD)
C A L L Q8SHIFTV(X'08', , KNEWD, , ISIXR,, JNEWD)
CALL Q8SHIFTV(X'08', , JNEWD, , ISIXL,, KMODD)
JSHFD = K N E W D - K M O D D
ISGAD = Q8VGATHR(ISD, JNEWD; ISGAD)
CALL Q8LINKV(X'I 0')
CALL Q8SHIFTV(X'00' , , ISGAD,, JSHFD, , ISGAD)
CALL Q8ANDV(X'09', , ISGAD,, IONE,, ISGAD)
OCCUPD -- ISGAD.EQ. 1

IXYZND = Q8VGATHR(NXD, IND; IXYZND)
W H E R E (OCCUPD)
IXYZD = IXYZD + IXYZND
KD = K N E W D
END W H E R E
C ONTINUE

Outside this innermost loop we calculate the distances as before; to
average over all ants we sum up the distance for each ant with the
Q8SSUM function.

In this way we achieved a speed of about 276 ns per step. The various
gather operations needed slow the vector machine down to a speed of only
8 times that of the scalar Cyber 76, below the full vector potential.

To build up the lattice of occupied and empty sites takes an apprecia-
ble fraction of execution time for short and medium times. In a scalar
version it required per site about 0.7 txs on the Cyber 76 and about 1.1 /~s
on the Cyber 205. A vectorized version, however, reduced that latter time to
0.06 /~s. We achieved that speed by incorporating the sign bit of the

Diffusion on Random Systems 439

difference between the random number and the probability p into a special
occupation vector. A vectorized logical OR put this bit into the IS words,
which are then shifted by one bit in a vectorized form. After 64 such
vectorized calls for random numbers, extraction of sign bits, and shifts, we
have stored 64 sites into each of the IS words. For the triangular lattice at
P =Pc = 1/2, an even shorter time of 0.037 #s was reached by simply
taking the leading nontrivial bit of the random integer as the occupation
bit. The innermost loop then was

21

DATA MASK/X'0000400000000000'/ at the beginning
ICID = 0
DO 21 II-- 1,64
CALL Q8MPYLV(X'08',, SAVED,, MPOWER,, SAVED)

CALL QSANDV(X'09',, SAVED,, MASK,, IOCCD)

CALL Q8LINKV(X'10')

CALL Q8SHIFTV(X'08',, ICID,, IONE,, ICID)

CALL Q8ORV(X'08',, IOCCD,, ICID,, ICID)

IS(l; N) = ICID

Here the first call gives random integers stored in SAVED, the second call
extracts the leading bit of this integer, the last two calls put this bit into
ICID. ICID, SAVED, and IOCCD describe arrays of length N, where N is
also the number of ants in the system. This increase in speed by a factor of
20 shows Clearly the advantages of vectorization in cases where no compli-
cated gathering operations are needed.

From this description it is quite clear that this vector computer is quite
clumsy in its use if one is interested in other than floating-point computa-
tions. It would be better, if the bit-by-bit logical and shift operations would,
in a vectorized form, be denoted by simple functions analogous to the
Cyber 76 FORTRAN language, instead of the assembler-type statements
Q 8 . . . used above. Also, gather operations should be made automatically
by the compiler, and the random number generator should become avail-
able in a simple efficiently vectorized form. Then programs like the above
would not run faster but would at least be easier to write down, as is
appropriate for higher programming languages like FORTRAN. Implementa-
tion of the bit gather operation, which here takes about half of the
execution time, in microcode as a machine instruction would presumably
lead to a significant increase in speed for the present program. Of course, if
the gather operation did not exist at all, as is the case with other super-
computers, the above altorithm would not be anywhere as fast.

440

4. RESULTS

Pandey et al.

4.1. General

Here we present the results of our computer simulations in L * L * L
simple cubic and L * L triangular lattices. We take p = 0.3117 and 0.5 in
these two cases, and fl = 5 /36 , 1, = 4 / 3 in two dimensions, while f l /u =
0.48 and p = 0.88 in three dimensions. (24) On the scalar computer we went
up to L = 180 in the cubic lattice and made only test runs in the triangular
case. Detailed statistics at p = 0.3117 were given in Ref. 11, and a similar
effort was made for p above and below Pc- On the vector computer at
p = 0.3117 we went up to L - - 2 5 6 where we let 500 to 1000 ants run on
each lattice, and simulated 4 lattices up to 10 million steps, 60 up to one
million, 100 up to 100000, and 3000 lattices up to 10000 steps. This series of
runs consisted of a total of nearly 1011 steps, each requiring one r andom
number, check if neighbor is occupied, and possibly a move to this
neighbor. As a result we get the rms average displacement R as a funct ion
of time t, where R is measured in units of the lattice spacing, and t in j ump
attempts. For the triangular lattice at p = 0.5, we used L up to L = 4096,
with 512 ants on each lattice, and used 9 lattices up to ten million steps, 50
up to one million, and about 1000 up to 10000, and also m a n y runs for
L -- 1024 and L = 2816, all on the vector computer. (Most of the data away

f rom Pc were produced on the scalar machine.)

4.2. At Three-Dimensional Threshold

To study the diffusion at the percolation threshold in the simple cubic
lattice, we worked on lattices of sizes L = 30, 60 180 on the scalar
computer and used L = 256 o n the vector machine. Figure 1 shows the
distance R traveled by the ant as a funct ion of time t, for L = 30, 180, and
256. F rom these data we determined the effective exponent k = d (l o g R)
/d(logt) as a funct ion of time; the results f rom the scalar computer were
already given in ReL 11; with k = 0.20 + 0.01 estimated there. Figure 2a
shows k as a funct ion of 1 /R for L = 256. The upturn for the longest times
was observed already at L = 60 for shorter times (~1) and presumably is a
finite-size effect. Ignoring it we extrapolate visually to infinite times and
distances to get k near 0.20. More accurately, Fig. 2b gives more reliable
data at intermediate times, f rom which we estimate again

k = 0.20 + 0.01 (21a)

The increase of the effective exponent k for very long times is a size
effect which is easy to explain qualitatively. In a finite lattice at Pc, a

Diffusion on Random Systems 441

Fig. 1.

R
-20

-10

-5

- -2e �9 �9 �9

t I I I I ,=3o_ ~ .

p - 0 . 3 1 1 7 .~"~ -
o �9 " ~L=IBO

�9

. . ' " 256x256•

I,o' 1,o' lo' I,o' , t
Average rms displacement R versus time steps t for L * L * L lattices with L = 30

(A), 180 (X), 256 (e) at the percolation threshold p = 0.3117.

k I I l I J , ~

/ - -35
/

/

=30 /
/

<0.6
I I I I

1,o
k I i i i

Q25 ~" •
,v, I

x
x

-02 0.2 03 t-o~s
I I I I

Fig. 2. The exponent k versus (a) I/R and (b) t -0"25 from the data for the sample 2563
presented in Fig. 1 at p = 0.3117, to extrapolate the result to the asymptotic limit R--> oo and
to estimate the correction terms to the asymptotic power law (R cc tk), respectively.

442 Pandey et ah

fraction of lattices is percolating, and the rest is not. Thus for a fraction of
our lattice realizations, the ant can travel to infinity, whereas for the other
realizations it is confined to finite clusters. Once the ant has moved over
distances much larger than L, the random lattice, with helical boundary
conditions, can be regarded as a periodic structure on which ordinary
diffusion takes place. Thus for these percolating lattices, the exponent k
must approach 1/2 for sufficiently long times. In our rms average for the
distance, at these very long times the large distances in the percolating
samples dominate over the finite displacements of the confined ants. Thus
also our average displacement R increases asymptotically with an exponent
k = 1/2 as for normal diffusion.

The prediction from the Alexander-Orbach relation, Eq. (16b), is
k = 0.201 + 0.001, in good agreement with our simulation. If we do not
assume Eq. (16b) to be valid then we can derive i~/v = 2.26 + 0.2 from Eqs.
(10) and (21a). This result is in accord with and nearly as accurate as the
best direct estimate (8) known to us (2.2 + 0.1), which was based on a Monte
Carlo transfer matrix calculation involving lattice sizes up to 2 4 . 2 4 . L.
Our Fig. 2b then suggests a leading correction of the form

R = t~ - 0 .9 / t ~176176176 (21b)

It seems quite possible that the leading corrrection term varies as 1/R,
without an additional exponent (Fig. 2a).

Earlier simulations (2'4'9) gave k near 0.25. We argue that the discrep-
ancy between the scaling theory and these earlier Monte Carlo data is due
to the fact that there the exponent k was calculated from moderately short
times of the order of a thousand steps. As seen clearly in Fig. 2, these times
are far from the asymptotic limit and indeed also in our work give an
effective exponent near 0.25. Reference 12 gives an independent confirma-
tion of this conclusion.

The times needed to get into "equilibrium" are unusually large because
the correction exponent is so small. Therefore, to have the R increase by
one order of magnitude, we have to increase the time t by five orders.
Viewed from Fig. 2a, where we useR instead of t as the variable, our walks
are not particularly large and on average cover at most about 35 lattice
constants. So we have seen another example that a strong increase in
Monte Carlo effort does not strongly reduce the error bars; it merely shows
that earlier error bars were overly optimistic since they neglected systematic
deviations from corrections to sealing.

4.3. Above the Three-Dimensional Threshold

For p > Pc we always have an infinite network along with finite
clusters. The larger p - P c is, the larger is the fraction of sites belonging to

Diffusion on Random Systems 443

this infinite cluster. The average asymptotic random walk behavior is
governed by Eq. (2), i.e., R 2 ~ t . The factor of proportionality is essentially
the diffusivity and varies as (p - p c) ", since our local origins are chosen
randomly anywhere in the system on an occupied site. Figure 3 shows how
R 2 varies with t for various p. The asymptotic slope of these curves gives
the diffusivity, as collected in Table I. Fitting these data to a simple power
law in p - P c we find a critical exponent/~ increasing slightly with system
size L: /~ = 1.71, 1.80, and 1.85 for L = 30, 60, and 180. The statistics for
L = 180 are as good as for the same size atpc. However, one should not be
optimistic on the errors in determining the slopes of R 2 versus t, particu-
larly close to p. Also, we have no reliable data very close to p since there the

-3000

-2000

•

�9 +

+

x +

4-
;" + +

-10.001+++~ o~2 o ~ :

~ : ' ~ , 10 15 210 tA0'
Fig. 3. Average mean square displacement R 2 versus t. The numbers on the data sets give

P - Pc. Each sample had 20 lattice realizations with 200 ants each.

Table I. The Values of Diffusivity (0.5dR 2/dt
for t--> ~) Calculated from the Data for R forp > Pc

for L �9 L �9 L Samples with L = 30, 60 and 180. a

Diffusion constant dR 2/ dt

Ap 303 603 1803

0.01 0.0015 0.0013
0.02 0.0056 0.0050 0.0041
0.03 0.0120 0.0105
0.04 0.0200 0.0160 0.0173
0.05 0.0270 0.0250 0.0253
0.06 0.0390 0.0370 0.0355
0.07 0.0480 0.0520 0.0456

Exponent: 1.71 1.80 1.85

~The exponent /~ in (diffusivity)oc (p - p c) ~ , was then
evaluated from these data of diffusivity in each of the
samples.

444 Pandey et al.

normal diffusion behavior sets in too late to be observable. The exponent
just quoted is simply taken from the slope of a log-log plot, which neglects
corrections to scaling. Therefore it is not surprising that this estimate is
about 10% too low compared with our more accurate determination,
/~ = 2;0 + 0,2, in the preceding section. (The data for L = 30 and 60 are
rather poor but accurate enough to provide an idea of the trend with
system size.)

4.4 . B e l o w the T h r e e - D i m e n s i o n a l T h r e s h o l d

For p < Pc al l clusters are f ini te. Thus i f we a l low the ants to execute
random walk motions for sufficiently long times, then the displacement R
will saturate to a value connected with an average cluster radius, Eqs. (t)
and (7). A typical growth curve is shown in Fig. 4. Fassnacht (2~ recently
has studied the approach of R to its saturation value and estimated the
exponent w in Eq. (1) as about 0.4:

log[R~ - R(t) l ec - t 0"4+-0"1 (22)

Using somewhat better statistics, we show in Fig. 5 that indeed w = 0.4 fits
t h e data better than w = 1. Mitescu and Roussenq (2) determined the shape
of the approach to equilibrium by a formula with several free parameters
but with a fixed w = 1 which we regard questionable. Moreover, w ~ 0.4 is
in nice agreement with the speculation mentioned in Section 2, which gives
w = 2 /5 for all dimensions.

The leading term in Eq. (1), viz.

R 2 cc (Pc - P)-m

can be analyzed more reliably. Table II gives our estimates for size L = 30,
60, and 180. A simple power law fit gives m = 1.2, 1.1, and 1.2 for these
three sizes. Again the statistics on the small lattices are worse than for
L = 180. Our estimate m ~ 1.2 is consistent with the theoretical prediction

Fig. 4.

' I ' 0 2 1 ' _
-0

o , . ~ e e e i o e e e ~ ~ ~ ~ ~ ~ e " e ~

fl " 1000 2000
I I J I , r

Average rms displacement R versus t for the 1803 samples, 20 realizations with 500
ants each, for the values o fp - Pc- indicated in the figure.

Diffusion on Random Systems 445

-~1.0 ~ p-0.2 717 --u + \ . ' ~
_ ~ ' ~

)

-0.5 1 2 4 ' '
J I

i

i:

-& 2'5 5'0 7~ 160 t ~
-" 281

Fig. 5. Plots of A = ln(R~ - R 2) versus t ~ (+) and t (e): (a) Sample size 1803,1o = 0.2717
(50 lattices with 500 ants each), and (b) sample size 28162, p = 0.4 (6 lattices with 500 ants
each).

Table II. The Saturation Values of the
rms Displacement R (the Average

Cluster Radii) at Various Concentrations p below
Percolation Threshold for L �9 L �9 L
Samples with L = 30, 60, and 180. a

R

~.p 303 603 1803

0.01 8.60 8,00 8.50
0.02 6.50 6.00 6.20
0.03 4.80 4.75 4.68
0.04 4.00 4,00 3.87
0.05 3.30 3.00 3.22

Exponent: 1.20 1.16 1.39

'~The exponent m in R 2 oc (P c - P) was evalu-
ated from these data of R in each sample.

4 4 6 P a n d e y et a l ,

m = 1.34 + 0.03 from Eq. (7), taking into account the unknown systematic
errors in our analysis due to our neglect of corrections to scaling.

4.5. Finite-Size Scaling

Let us now see how our data on finite lattices fit the finite-size scaling
laws widely discussed in the literature. (25) In a finite system the correlation
length, which in infinite systems diverges as (p -pc) -~, has to remain finite
and will approach a maximum near Pc of the order of L, the linear
dimension of the system. Similarly, any other quantity diverging or vanish-
ing with some power of Ip -&[, will also stay finite atpc in a finite system.
However, if we express this other quantity not through powers of p - Pc but
of 4, then this relation will still remain valid, apart from a constant factor,
at Pc even in a finite system.

In our case, the diffusivity D(p), which in an infinite system varies as
(p -pc)~'cr-~-~'/~, therefore is expected to be about L -~/~ at Pc in a finite
lattice. More generally, finite-size scaling expects

D(p, L) = L-~/~a#[(p - pc)L '/~] (23a)

and analogously,

R 2= Lm/~'t'[(p-p~)L '/~] (23b)

; I i I '

..o

-0.2 1000-

- &

_ &

500-

Fig. 6. Plots of /)=(d i f fus iv i ty)L "/~ versus ~ =] p - p c] L ~/" (full symbols) and /~2
= R 2 L m/,, versus /~ (empty symbols) for samples L* L* L with L = 30 (dots), 60 (tri-
angles), 180 (squares). We used ~ /u = 2.0 and m/~, = 1.53.

Diffusion on Random Systems 447

Figure 6 shows for L = 30, 60, and 180 the diffusivity and squared dis-
tance, normalized by L -~/~ and L re~p, respectively, versus the argument
(p - p) L 1/~ of the scaling functions in Eq. (23). The agreement with
finite-size scaling is reasonable; all the points for the different sample sizes
lie almost on the same curves.

4.6. At the Two-Dimens iona l Threshold

Nearly all simulations in two dimensions were made on the vector
computer with 512 ants on each lattice. We concentrated on p --Pc. Since
Pc = 1/2 and also the expected k = 1/3 are known or hoped to be exact, it
is more practical to work with the scaled distance R / t 1/3. This scaled
distance should approach a constant for infinite time in infinite lattices.
Figure 7 shows our data for L -- 2816 and L = 4096 for the scaled distance
as a function of log(t). Up to t - -100000 they seem to confirm this
relaxation towards a plateau. However, beyond that time a decrease of the
scaled distance was observed for L = 2816, somewhat larger than the
statistical error. The same downturn occurred an order of magnitude later
for L = 4096. In principle for very large times the displacement in finite
systems should be larger than in infinite lattices due to our helical bound-
ary conditions (see Section 4.2). The larger the lattice is, the later this
upward deviation should occur. Therefore an increase of the scaled dis-
tance with time could easily be discarded as a finite-size effect. We observe
the opposite trend, a decrease. Very small systems show clearly that the
distance for small times is smaller, and not larger, than in large systems. It
is therefore possible that the finite size of this triangular lattice decreases R
for intermediate times and increases R for very long times. (For L = 1024

0.95

i "~- . - I i I

o
o

o ~

.0.90 ~ 4096 x 1,096
o

Fig. 7. R/t I/3 versus t plots for L * L lat t ices with L = 4096 and 512 ants on each lat t ice

real izat ion. The number s on each da ta set in this semi logar i thmic plot give the n u m b e r of
lattices. The solid line is our best fit, the dashed l ine cor responds to/~ = v. The dashed-do t t ed
l ine ind ica tes the finite-size downtu rn for L = 2816.

448 Pandey et ah

and t > 10 5, we did find such an increase.) A quantitative analysis was not
possible since the finite-size effects in the region of interest are mixed too
strongly with the finite-time effects (corrections to scaling). Thus we only
conclude that the downward trend at the end of the curves should not be
relied upon, (Some indications of a nonmonotonic size effect were also seen
in Fig. 1 for three dimensions.)

If we took the final downturn seriously, we would find our data
compatible with the hypothesis # = v, which corresponds to k = 0.328. This
exponent corresponds to the strong negative slope shown in Fig. 7. But
since we prefer to ignore this size-dependent downturn, we regard the line
with the smaller negative slope in that figure to be a much better estimate.
It corresponds to

k = 0.332 ___ 0.002 (24)

and does not exclude the possibility k = 1/3, which is the Alexander-
Orbach prediction. This estimate is exactly the same as that of Derrida and
Vannimenus: /~ = 1.28 ___ 0.02, obtained by a transfer matrix simulation. (26)
We encourage more computational effort with that method to determine/x
better. (See our note added in proof.)

The approach to the plateau in Fig. 7 again gives a rough estimate of
the correction exponent:

R =/1/3(0.99 - 0 .4 / t ~176176 + . . .) (25)

The coefficient 0.99 o f the leading term in Eq. (25), as determined
from 30 < t < 104, seems slightly higher than the average 0.98 found from
the less accurate data at much longer times. The exponent 0.45 of the
correction term is about twice as large as in three dimensions. Therefore the
corrections are for large times much smaller in two than in three dimen-
sions, which makes it now easier to determine the leading term but more
difficult to determine the corrections.

The cluster numbers, n~, at p =Pc in two dimensions, vary as (27) s -~
(1 - c o n s t / s a) with possibly ~2 = 1 - o = 0.6. Since times t scale as s 3/2
according to Eq. (17), this correction would correspond to a factor (1 +
const ' / t~ in our case, compatible with Eq. (25).

Finally, the approach to equilibrium below p is again consistent with
the speculation in Section 2, that log[Ro~ - R(t)] varies as 1 / t 2/5 indepen-
dently of dimensionality. Our data were already included in Fig. 5.

5. CONCLUSION

We have studied in detail the problem of classical diffusion on random
systems below, at, and above the percolation threshold by Monte Carlo
studies of triangular and simple cubic lattices. Earlier discrepancies be-

Diffusion on Random Systems 449

tween scaling theory and computer experiment were shown to be due to too
short times or too small lattices. Our results for the conductivity exponent
/~, calculated by dynamical scaling from our data, are in good agreement
with other recent results and with the hypothesis of Alexander and Orbach:
/z = 2.0 + 0.2 in three and 1.28 + 0.02 in two dimensions. A correction-to-
scaling exponent was estimated at p =Pc to be appreciably larger in the
triangular lattice than in the cubic lattice. The approach to the finite
asymptotic value for the displacement below p seems to be consistent with
a speculation that the corresponding exponent is 2 / 5 independent of
dimensionality. For future work in two dimensions it would be desirable to
use larger lattices or to work with a different algorithm corresponding to
infinite lattices. Work in four dimensions, (22) on pair diffusion in two and
three dimensions, (28) and on biased diffusion ~29) is in progress.

Part of the simulations were made on a Cyber 76 scalar computer and
part on a Cyber 205 vector computer. We described the computer program
in sufficient detail to introduce the reader to the difficulties of vector
programming, which paid off in a gain of speed by about one order of
magnitude.

We remark that it would have saved computer time had a much larger
memory been available on the Cyber 205. F o r then we could have made all
simulations on a much larger lattice, instead of trying without much success
to analyze for finite-size effects in various smaller lattice sizes.

A C K N O W L E D G M E N T S

We thank S. Selberherr, H. G. Baumgartel, S. Wansleben, S. Havlin,
K. Kehr, and R. Rammal for helpful advice and information, and Sonder-
forschungsbereich 125 for financial support.

NOTE ADDED IN PROOF

The time for one diffusion step on the vector computer was reduced to
218 ns by using the "register gather" trick described by S. Wansleben and
J. G. Zabolitzky, preprint; it was further reduced to 167 ns if each site is
stored in one word, and not in one bit. For two dimensions, J. G.
Zabolitzky (preprint) found i x / v ~ 0.97 with the method of Ref. 26, which
leads to k = 0.330 for the exponent in Fig. 7, more accurate than our
Eq. (24).

REFERENCES

1. P. G. de Gennes, La Recherche 7:919 (1976).
2. C. Mitescu and J. Roussenq, Ann. Israel Phys. Soc. 5:81 (1983).
3. B. B. Mandelbrot, Ann. Israel Phys. Soc. 5:59 (1983).

450 Pandey et al

4. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50:77 (1983); K. W. Kehr, J.
Stat. Phys. 30:509 (1983); R. Kutner and K. W. Kehr, Phil. Mag. A48:199 (1983).

5. S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43:L625 (1982).
6. P. C. Hohenberg and B. I. Halperin, Rev. Mod Phys. 49:435 (1977).
7. C. Mitescu and M. J. Musolf, J. Phys. (Paris) Lett. 44:L679 (1983).
8. B. Derrida, D. Stauffer, H. J. Herrmann, and J. Vannimenus, J. Phys. (Paris) Lett.

44:L701 (1983).
9. D. Ben-Avraham and S. Havlin, J. Phys. A 15:L691 (1982).

10. D. Stauffer, Phys. Rep. 54:3 (1979); J. W. Essam, Rep. Progr. Phys. 43:843 (1980).
11. R. B. Pandey and D. Stauffer, Phys. Rev. Lett. 51:527 (1983).
12. S. Havlin and D. Ben-Avraham, J. Phys. A 16:L483 (1983).
13. P. Meakin and H. E. Stanley, Phys. Rev. Letters 51:1457 (1983).
14. T. Vicsek, J. Phys. A 16:1215 (1983).
15. R. Rammal and G. Toulouse, 3". Phys. (Paris) Lett. 44:L13 (1983).
16. S. Havlin and D. Ben-Avraham, preprint (National Institutes of Health, 1983).
17. R. B. Pandey and D. Stauffer, J. Phys. A 16:L511 (1983).
18. P. Argyrakis and R. Kopelman, preprint (University of Michigan, 1983).
19. S. Wilke, Y. Gefen, V. Ilkovic, A. Aharony, and D. Stauffer, J. Phys. A, in press (1983).
20. C. J. Fassnacht, J. Undergrad. Res. in Phys. 2:23 (1983).
21. J. C. Angles d'Auriac, A. Benoit, and R. Rammal, J. Phys. A 16:4039 (1983).
22. D. Lukas, preprint (Cologne University, 1983).
23. M. H. Kalos, private communication.
24. D. W. Heermann and D. Stauffer, Z. Phys. B44:333 (1981); A. Margolina, H. J.

Herrmann, and D. Stauffer, Phys. Lett. 69A:73 (1982).
25, K. Binder (ed.), Monte Carlo Methods in Statistical Physics (Springer-Verlag, Heidelberg,

1979).
26. B. Derrida and J. Vannimenus, J. Phys. A 15:L559 (1982).
27. A. Margolina, Z. V. Djordjevic, D. Stauffer, and H. E. Stanley, Phys. Rev. B 28:1625

(1983).
28. O. Patzold, preprint (Cologne University, 1983).
29. R. B. Pandey, preprint (Cologne University, 1983).

